首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   6篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   30篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   21篇
  2007年   13篇
  2006年   12篇
  2005年   13篇
  2004年   3篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1927年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
61.
The active and inactive X chromosomes have distinct epigenetic marks in somatic nuclei, which undergo reprogramming after transplantation into oocytes. We show that, despite the disappearance of Xist RNA coating in 30 min, the epigenetic memory of the inactive X persists with the precocious appearance of histone H3 trimethylation of lysine 27 (H3-3meK27), without the expected colocalization with Eed/Ezh2. Subsequently, Xist re-appears on the original inactive X, and the silent Xist on the active X undergoes re-activation, resulting in unusual biallelic Xist RNA domains. Despite this abnormal Xist expression pattern, colocalization of H3-3meK27 and Eed is thereafter confined to a single Xist domain, which is presumably on the original inactive X. These epigenetic events differ markedly from the kinetics of preferential paternal X inactivation in normal embryos. All the epigenetic marks on the X are apparently erased in the epiblast, suggesting that the oocyte and epiblast may have distinct properties for stepwise programming of the genome.  相似文献   
62.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   
63.
Mitogenically stimulated human and mouse lymphocytes enter the cell cycle (G0, G1A, G1B, S, G2+M) via a newly recognized subphase, G1'. This subphase precedes G1A and is distinct from G0. The G1' subphase is absent in immortalized and tumorigenic lymphoblastoid cell lines (LCLs) by cytofluorimetric criteria. Furthermore, colcemid inhibits transition through the G0/G1' as well as G2 phases in mitogen-stimulated lymphocytes and in LCLs. Tumorigenic LCLs are not sensitive to growth inhibition by colcemid during early G1. These observations suggest that a progressive series of changes have occurred during G0/G1' which lead to deregulation of growth control.  相似文献   
64.
65.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   
66.
67.
Only a few studies to date have conducted comparative genomics in the Myrtaceae family. Here, we report the complete sequence and bioinformatics analysis of the chloroplast genome of Syzygium cumini (L.), one of the family members. The size of S. cumini cp genome was within the range of reported angiosperm chloroplast genomes. Comparison of S. cumini cpDNA sequence with previously reported partial sequences of S. cumini revealed several SNPs that resulted in non-synonymous mutations in maturase K and NADH-plastoquinone oxidoreductase subunit-5. These polymorphic characters might serve as intra-specific markers to address whether lineage sorting from polymorphic ancestry has occurred. Comparison of the S. cumini chloroplast genome with related dicots revealed an expansion in the intergenic spacer located between IRA/large single copy (LSC) border and the first gene of LSC region, driven by sequence of 54 bp. This type of variation in the intergenic regions can be utilized in the development of species-specific vectors for chloroplast genetic engineering. Several of the longer (30–40 bp) repeats were found to be conserved in other dicot species, suggesting that they might be widespread in angiosperm chloroplast genomes.  相似文献   
68.
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.  相似文献   
69.
70.
Genetic and epigenetic regulators of pluripotency   总被引:14,自引:0,他引:14  
Surani MA  Hayashi K  Hajkova P 《Cell》2007,128(4):747-762
Genetic and epigenetic mechanisms regulate the transition from the totipotent zygote to pluripotent primitive ectoderm cells in the inner cell mass of mouse blastocysts. These pluripotent cells can be propagated indefinitely in vitro, underpinned by a unique epigenetic state. Following implantation of the blastocyst, diverse epigenetic modifiers control differentiation of pluripotent epiblast cells into somatic cells, while specification of germ cells requires repression of the somatic program. Regenerating totipotency during development of germ cells entails re-expression of pluripotency-specific genes and extensive erasure of epigenetic modifications. Increasing knowledge of key underlying mechanisms heightens prospects for creating pluripotent cells directly from adult somatic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号